
OMERO.web Installation doc
Documentation

Release 0.1.0

The Open Microscopy Environment

Apr 27, 2021

CONTENTS

1 Configuration 3

2 Upgrading 5

3 Optimizing OMERO as a Data Repository 7

4 Installation Walkthroughs 9

Index 65

i

ii

OMERO.web Installation doc Documentation, Release 0.1.0

OMERO.web is a Python 3 client of the OMERO platform that provides a web-based UI and JSON API. This sec-
tion provides links to detailed step-by-step walkthroughs describing how to install, customize, maintain and run
OMERO.web for several systems. OMERO.web is installed separately from the OMERO.server.

OMERO.web can be deployed with:

• WSGI using a WSGI capable web server such as NGINX and Gunicorn

• the built-in Django lightweight development server. This type of deployment should only be used for testing
purpose only; see the Developers Deployment page.

If you need help configuring your firewall rules, see Security for more details.

Depending upon which platform you are using, you may find a more specific walkthrough listed below. The guides
use the example of deploying OMERO.web with NGINX and Gunicorn. OMERO can automatically generate a con-
figuration file for your webserver. The location of the file will depend on your system, please refer to your webserver’s
manual. See in the section Customizing your OMERO.web installation in the various walkthroughs for more options.

CONTENTS 1

https://wsgi.readthedocs.org
https://nginx.org/
https://docs.gunicorn.org/
https://docs.openmicroscopy.org/omero/latest/developers/Web/Deployment.html
https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html
https://nginx.org/
https://docs.gunicorn.org/

OMERO.web Installation doc Documentation, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

CONFIGURATION

You will find in the various guides how to create the NGINX OMERO configuration file and the configuration steps
for the NGINX and Gunicorn. Advanced Gunicorn setups are also described to enable the download of binary data
and to handle multiple clients on a single worker thread switching context as necessary while streaming binary data
from OMERO.server. Depending on the traffic and scale of the repository you should configure connections and speed
limits on your server to avoid blocking resources.

To set the various OMERO.web properties, check the OMERO.web configuration glossary.

3

https://docs.openmicroscopy.org/omero/latest/sysadmins/config.html#web

OMERO.web Installation doc Documentation, Release 0.1.0

4 Chapter 1. Configuration

CHAPTER

TWO

UPGRADING

Starting with OMERO 5.6, OMERO.server and OMERO.web installations are assumed to be separate throughout
documentation, each with its own virtualenv and installation directory.

OMERO.web upgrade

5

OMERO.web Installation doc Documentation, Release 0.1.0

6 Chapter 2. Upgrading

CHAPTER

THREE

OPTIMIZING OMERO AS A DATA REPOSITORY

This section explains how to customize the appearance and functionality of OMERO.web to host images for groups or
public viewing.

Publishing data using OMERO.web

OMERO.web UI customization

7

OMERO.web Installation doc Documentation, Release 0.1.0

8 Chapter 3. Optimizing OMERO as a Data Repository

CHAPTER

FOUR

INSTALLATION WALKTHROUGHS

Recommended:

OMERO.web installation on CentOS 7 and IcePy 3.6 Instructions for installing OMERO.web from scratch on Cen-
tOS 7 with Ice 3.6.

OMERO.web installation on Ubuntu 20.04 and IcePy 3.6 Instructions for installing OMERO.web from scratch on
Ubuntu 20.04 with Ice 3.6.

OMERO.web installation on Debian 10 and IcePy 3.6 Instructions for installing OMERO.web from scratch on De-
bian 10 with Ice 3.6.

Others:

OMERO.web installation on CentOS 8 and IcePy 3.6 Instructions for installing OMERO.web from scratch on Cen-
tOS 8 with Ice 3.6.

OMERO.web installation on Ubuntu 18.04 and IcePy 3.6 Instructions for installing OMERO.web from scratch on
Ubuntu 18.04 with Ice 3.6.

OMERO.web installation on Debian 9 and IcePy 3.6 Instructions for installing OMERO.web from scratch on De-
bian 9 with Ice 3.6.

4.1 OMERO.web installation on CentOS 7 and IcePy 3.6

Please first read server installation on CentOS 7.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

9

https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-centos7-ice36.html

OMERO.web Installation doc Documentation, Release 0.1.0

4.1.1 Installing prerequisites

The following steps are run as root.

Install dependencies:

yum -y install epel-release

yum -y install unzip

yum -y install python3

yum -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

yum -y install redis

systemctl enable redis.service

systemctl start redis.service

4.1.2 Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-py-
→˓centos7/releases/download/0.2.1/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Install OMERO.web:

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

4.1.3 Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via
pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

10 Chapter 4. Installation Walkthroughs

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/

OMERO.web Installation doc Documentation, Release 0.1.0

4.1.4 Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an
attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automat-
ically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/
→˓omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn
is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO
processes. You can check their status or stop them using omero web status or omero web stop.

• Session engine:

• OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

• Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
→˓cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

• After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.
→˓backends.cache

• Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be
changed by setting omero.web.prefix and omero.web.static_url. For example, to
make OMERO.web appear at http://example.org/omero/ :

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of developers/index.html#web_index develop-
ers documentation. For the full list, refer to Configuration properties.

The most popular configuration options include:

• Debug mode, see omero.web.debug.

4.1. OMERO.web installation on CentOS 7 and IcePy 3.6 11

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions
https://redis.io/
https://github.com/jazzband/django-redis/
https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index

OMERO.web Installation doc Documentation, Release 0.1.0

• Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.
login_logo) or use an index page as an alternative landing page for users (omero.web.
index_template). See OMERO.web UI customization for further information.

• Enabling a public user see Publishing data using OMERO.web.

4.1.5 Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin:$PATH:

• omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

• omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For ex-
ample to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
→˓omero/web/omero-web/var/log/error.log"

4.1.6 Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your
OMERO.web installation. This can be achieved using the django-cors-headers app with additional configuration of
OMERO.web. See the django-cors-headers page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins
in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
→˓middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.
→˓middleware.CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

12 Chapter 4. Installation Walkthroughs

https://docs.gunicorn.org/en/stable/settings.html
https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers

OMERO.web Installation doc Documentation, Release 0.1.0

4.1.7 Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
if [-f /etc/nginx/conf.d/default.conf]; then

mv /etc/nginx/conf.d/default.conf /etc/nginx/conf.d/default.disabled
fi
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

systemctl enable nginx

systemctl start nginx

For production servers you may need to add additional directives to the configuration file, for example to enable
HTTPS. As an alternative to manually modifying the generated file you can generate a minimal configuration and
include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-
→˓location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration
and your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the sysadmins/server-security.html page.

4.1.8 Running OMERO.web

The following steps are run as root.

Install WhiteNoise:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
→˓RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.
→˓middleware.WhiteNoiseMiddleware"}'

omero web start

(continues on next page)

4.1. OMERO.web installation on CentOS 7 and IcePy 3.6 13

https://nginx.org/en/docs/http/configuring_https_servers.html
https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html
http://whitenoise.evans.io/
https://github.com/jazzband/django-redis

OMERO.web Installation doc Documentation, Release 0.1.0

(continued from previous page)

Test installation e.g. curl -sL localhost:4080

omero web stop

4.1.9 Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a systemd.service file could be created. See below an example
file omero-web-systemd.service:

[Unit]
Description=OMERO.web
Not mandatory, NGINX may be running on a different server
Requires=nginx.service
After=network.service

[Service]
User=omero-web
Type=forking
PIDFile=/opt/omero/web/omero-web/var/django.pid
Restart=no
RestartSec=10
Environment="PATH=/opt/omero/web/venv3/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/
→˓sbin:/usr/sbin"
Environment="OMERODIR=/opt/omero/web/omero-web"
ExecStart=/opt/omero/web/venv3/bin/omero web start
ExecStop=/opt/omero/web/venv3/bin/omero web stop

[Install]
WantedBy=multi-user.target

Copy the systemd.service file, then enable and start the service:

cp omero-web-systemd.service /etc/systemd/system/omero-web.service

systemctl daemon-reload

systemctl enable omero-web.service

systemctl stop omero-web.service

systemctl start omero-web.service

14 Chapter 4. Installation Walkthroughs

OMERO.web Installation doc Documentation, Release 0.1.0

4.1.10 Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

• Session cookies omero.web.session_expire_at_browser_close:

– A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

– The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

• Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is therefore
the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

4.1.11 Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.
log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

4.1.12 Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

4.1. OMERO.web installation on CentOS 7 and IcePy 3.6 15

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html

OMERO.web Installation doc Documentation, Release 0.1.0

Experimental: Sync workers

The following steps are run as root.

Install futures:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

4.1.13 SELinux

The following steps are run as root.

If you are running a system with SELinux enabled and are unable to access OMERO.web you may need to adjust the
security policy:

if [$(getenforce) != Disabled]; then

yum -y install policycoreutils-python
setsebool -P httpd_read_user_content 1
setsebool -P httpd_enable_homedirs 1
semanage port -a -t http_port_t -p tcp 4080

fi

16 Chapter 4. Installation Walkthroughs

https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/
https://docs.gunicorn.org/en/stable/settings.html#worker-connections
https://wiki.centos.org/HowTos/SELinux

OMERO.web Installation doc Documentation, Release 0.1.0

4.2 OMERO.web installation on CentOS 8 and IcePy 3.6

Please first read server installation on CentOS 8.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

4.2.1 Installing prerequisites

The following steps are run as root.

Install dependencies:

yum -y install epel-release

yum -y install unzip

yum -y install python3

yum -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

yum -y install redis python3-redis

systemctl enable redis.service

systemctl start redis.service

4.2.2 Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-
→˓centos8/releases/download/0.0.1/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Install OMERO.web:

4.2. OMERO.web installation on CentOS 8 and IcePy 3.6 17

https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-centos8-ice36.html

OMERO.web Installation doc Documentation, Release 0.1.0

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

4.2.3 Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via
pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

4.2.4 Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an
attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automat-
ically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/
→˓omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn
is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO
processes. You can check their status or stop them using omero web status or omero web stop.

• Session engine:

• OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

• Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
→˓cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

• After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.
→˓backends.cache

• Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be
changed by setting omero.web.prefix and omero.web.static_url. For example, to
make OMERO.web appear at http://example.org/omero/ :

18 Chapter 4. Installation Walkthroughs

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions
https://redis.io/
https://github.com/jazzband/django-redis/

OMERO.web Installation doc Documentation, Release 0.1.0

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of developers/index.html#web_index develop-
ers documentation. For the full list, refer to Configuration properties.

The most popular configuration options include:

• Debug mode, see omero.web.debug.

• Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.
login_logo) or use an index page as an alternative landing page for users (omero.web.
index_template). See OMERO.web UI customization for further information.

• Enabling a public user see Publishing data using OMERO.web.

4.2.5 Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin:$PATH:

• omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

• omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For ex-
ample to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
→˓omero/web/omero-web/var/log/error.log"

4.2.6 Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your
OMERO.web installation. This can be achieved using the django-cors-headers app with additional configuration of
OMERO.web. See the django-cors-headers page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins
in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
→˓middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.
→˓middleware.CorsPostCsrfMiddleware"}'

(continues on next page)

4.2. OMERO.web installation on CentOS 8 and IcePy 3.6 19

https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index
https://docs.gunicorn.org/en/stable/settings.html
https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers

OMERO.web Installation doc Documentation, Release 0.1.0

(continued from previous page)

omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

4.2.7 Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
if [-f /etc/nginx/conf.d/default.conf]; then

mv /etc/nginx/conf.d/default.conf /etc/nginx/conf.d/default.disabled
fi
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

systemctl enable nginx

systemctl start nginx

For production servers you may need to add additional directives to the configuration file, for example to enable
HTTPS. As an alternative to manually modifying the generated file you can generate a minimal configuration and
include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-
→˓location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration
and your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the sysadmins/server-security.html page.

4.2.8 Running OMERO.web

The following steps are run as root.

Install WhiteNoise:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
→˓RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

20 Chapter 4. Installation Walkthroughs

https://nginx.org/en/docs/http/configuring_https_servers.html
https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html
http://whitenoise.evans.io/
https://github.com/jazzband/django-redis

OMERO.web Installation doc Documentation, Release 0.1.0

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.
→˓middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

4.2.9 Automatically running OMERO.web

The following steps are run as root.

Copy the systemd.service file, then enable and start the service:

cp omero-web-systemd.service /etc/systemd/system/omero-web.service

systemctl daemon-reload

systemctl enable omero-web.service

systemctl stop omero-web.service

systemctl start omero-web.service

4.2.10 Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

• Session cookies omero.web.session_expire_at_browser_close:

– A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

– The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

• Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is therefore
the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

4.2. OMERO.web installation on CentOS 8 and IcePy 3.6 21

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO.web Installation doc Documentation, Release 0.1.0

4.2.11 Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.
log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

4.2.12 Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.

Install futures:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

22 Chapter 4. Installation Walkthroughs

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/
https://docs.gunicorn.org/en/stable/settings.html#worker-connections

OMERO.web Installation doc Documentation, Release 0.1.0

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

4.2.13 SELinux

The following steps are run as root.

If you are running a system with SELinux enabled and are unable to access OMERO.web you may need to adjust the
security policy:

if [$(getenforce) != Disabled]; then

yum -y install policycoreutils-python
setsebool -P httpd_read_user_content 1
setsebool -P httpd_enable_homedirs 1
semanage port -a -t http_port_t -p tcp 4080

fi

4.3 OMERO.web installation on Ubuntu 18.04 and IcePy 3.6

Please first read server installation on Ubuntu 18.04.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

4.3.1 Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update

apt-get -y install unzip
apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

4.3. OMERO.web installation on Ubuntu 18.04 and IcePy 3.6 23

https://wiki.centos.org/HowTos/SELinux
https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-ubuntu1804-ice36.html

OMERO.web Installation doc Documentation, Release 0.1.0

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

4.3.2 Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-
→˓ubuntu1804/releases/download/0.2.0/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Install OMERO.web:

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

4.3.3 Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via
pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

4.3.4 Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an
attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automat-
ically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/
→˓omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn
is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO
processes. You can check their status or stop them using omero web status or omero web stop.

24 Chapter 4. Installation Walkthroughs

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/

OMERO.web Installation doc Documentation, Release 0.1.0

• Session engine:

• OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

• Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
→˓cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

• After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.
→˓backends.cache

• Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be
changed by setting omero.web.prefix and omero.web.static_url. For example, to
make OMERO.web appear at http://example.org/omero/ :

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of developers/index.html#web_index develop-
ers documentation. For the full list, refer to Configuration properties.

The most popular configuration options include:

• Debug mode, see omero.web.debug.

• Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.
login_logo) or use an index page as an alternative landing page for users (omero.web.
index_template). See OMERO.web UI customization for further information.

• Enabling a public user see Publishing data using OMERO.web.

4.3.5 Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin:$PATH:

• omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

• omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For ex-
ample to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
→˓omero/web/omero-web/var/log/error.log"

4.3. OMERO.web installation on Ubuntu 18.04 and IcePy 3.6 25

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions
https://redis.io/
https://github.com/jazzband/django-redis/
https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index
https://docs.gunicorn.org/en/stable/settings.html

OMERO.web Installation doc Documentation, Release 0.1.0

4.3.6 Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your
OMERO.web installation. This can be achieved using the django-cors-headers app with additional configuration of
OMERO.web. See the django-cors-headers page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins
in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
→˓middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.
→˓middleware.CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

4.3.7 Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable
HTTPS. As an alternative to manually modifying the generated file you can generate a minimal configuration and
include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-
→˓location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration
and your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the sysadmins/server-security.html page.

26 Chapter 4. Installation Walkthroughs

https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers
https://nginx.org/en/docs/http/configuring_https_servers.html
https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html

OMERO.web Installation doc Documentation, Release 0.1.0

4.3.8 Running OMERO.web

The following steps are run as root.

Install WhiteNoise:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
→˓RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.
→˓middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

4.3.9 Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-
web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
Redhat
chkconfig: - 98 02
description: init file for OMERO.web
###

(continues on next page)

4.3. OMERO.web installation on Ubuntu 18.04 and IcePy 3.6 27

http://whitenoise.evans.io/
https://github.com/jazzband/django-redis

OMERO.web Installation doc Documentation, Release 0.1.0

(continued from previous page)

RETVAL=0
prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
echo -n $"Starting $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web start" &> /dev/null && echo -n ' OMERO.web'
sleep 5
RETVAL=$?
["$RETVAL" = 0]

echo
}

stop() {
echo -n $"Stopping $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web stop" &> /dev/null && echo -n ' OMERO.web'
RETVAL=$?
["$RETVAL" = 0]

echo
}

status() {
echo -n $"Status $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web status"
RETVAL=$?

}

case "$1" in
start)

start
;;

stop)
stop
;;

restart)
stop
start
;;

status)
status
;;

*)
echo $"Usage: $0 {start|stop|restart|status}"
RETVAL=1

esac
exit $RETVAL

28 Chapter 4. Installation Walkthroughs

OMERO.web Installation doc Documentation, Release 0.1.0

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

cron
service nginx start
service omero-web restart

4.3.10 Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

• Session cookies omero.web.session_expire_at_browser_close:

– A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

– The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

• Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is therefore
the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

4.3.11 Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.
log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

4.3. OMERO.web installation on Ubuntu 18.04 and IcePy 3.6 29

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO.web Installation doc Documentation, Release 0.1.0

4.3.12 Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.

Install futures:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

30 Chapter 4. Installation Walkthroughs

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/
https://docs.gunicorn.org/en/stable/settings.html#worker-connections

OMERO.web Installation doc Documentation, Release 0.1.0

4.4 OMERO.web installation on Ubuntu 20.04 and IcePy 3.6

Please first read server installation on Ubuntu 20.04.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.8 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

4.4.1 Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update

apt-get -y install unzip
apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

4.4.2 Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-
→˓ubuntu2004/releases/download/0.2.0/zeroc_ice-3.6.5-cp38-cp38-linux_x86_64.whl

Install OMERO.web:

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

4.4. OMERO.web installation on Ubuntu 20.04 and IcePy 3.6 31

https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-ubuntu2004-ice36.html

OMERO.web Installation doc Documentation, Release 0.1.0

4.4.3 Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via
pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

4.4.4 Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an
attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automat-
ically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/
→˓omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn
is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO
processes. You can check their status or stop them using omero web status or omero web stop.

• Session engine:

• OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

• Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
→˓cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

• After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.
→˓backends.cache

• Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be
changed by setting omero.web.prefix and omero.web.static_url. For example, to
make OMERO.web appear at http://example.org/omero/ :

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

32 Chapter 4. Installation Walkthroughs

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions
https://redis.io/
https://github.com/jazzband/django-redis/

OMERO.web Installation doc Documentation, Release 0.1.0

All configuration options can be found on various sections of developers/index.html#web_index develop-
ers documentation. For the full list, refer to Configuration properties.

The most popular configuration options include:

• Debug mode, see omero.web.debug.

• Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.
login_logo) or use an index page as an alternative landing page for users (omero.web.
index_template). See OMERO.web UI customization for further information.

• Enabling a public user see Publishing data using OMERO.web.

4.4.5 Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin:$PATH:

• omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

• omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For ex-
ample to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
→˓omero/web/omero-web/var/log/error.log"

4.4.6 Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your
OMERO.web installation. This can be achieved using the django-cors-headers app with additional configuration of
OMERO.web. See the django-cors-headers page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins
in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
→˓middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.
→˓middleware.CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

4.4. OMERO.web installation on Ubuntu 20.04 and IcePy 3.6 33

https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index
https://docs.gunicorn.org/en/stable/settings.html
https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers

OMERO.web Installation doc Documentation, Release 0.1.0

4.4.7 Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable
HTTPS. As an alternative to manually modifying the generated file you can generate a minimal configuration and
include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-
→˓location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration
and your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the sysadmins/server-security.html page.

4.4.8 Running OMERO.web

The following steps are run as root.

Install WhiteNoise:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
→˓RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.
→˓middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

34 Chapter 4. Installation Walkthroughs

https://nginx.org/en/docs/http/configuring_https_servers.html
https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html
http://whitenoise.evans.io/
https://github.com/jazzband/django-redis

OMERO.web Installation doc Documentation, Release 0.1.0

4.4.9 Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-
web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
Redhat
chkconfig: - 98 02
description: init file for OMERO.web
###

RETVAL=0
prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
echo -n $"Starting $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web start" &> /dev/null && echo -n ' OMERO.web'
sleep 5
RETVAL=$?
["$RETVAL" = 0]

echo
}

stop() {
echo -n $"Stopping $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web stop" &> /dev/null && echo -n ' OMERO.web'
RETVAL=$?
["$RETVAL" = 0]

echo
}

status() {
echo -n $"Status $prog:"

(continues on next page)

4.4. OMERO.web installation on Ubuntu 20.04 and IcePy 3.6 35

OMERO.web Installation doc Documentation, Release 0.1.0

(continued from previous page)

su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}
→˓web status"

RETVAL=$?
}

case "$1" in
start)

start
;;

stop)
stop
;;

restart)
stop
start
;;

status)
status
;;

*)
echo $"Usage: $0 {start|stop|restart|status}"
RETVAL=1

esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

cron
service nginx start
service omero-web restart

4.4.10 Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

• Session cookies omero.web.session_expire_at_browser_close:

– A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

– The age of session cookies, in seconds. The default value is 86400:

36 Chapter 4. Installation Walkthroughs

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions

OMERO.web Installation doc Documentation, Release 0.1.0

omero config set omero.web.session_cookie_age 86400

• Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is therefore
the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

4.4.11 Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.
log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

4.4.12 Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.

Install futures:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

4.4. OMERO.web installation on Ubuntu 20.04 and IcePy 3.6 37

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads

OMERO.web Installation doc Documentation, Release 0.1.0

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

4.5 OMERO.web installation on Debian 9 and IcePy 3.6

Please first read server installation on Debian 9.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.5 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

4.5.1 Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update

apt-get -y install unzip

apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

38 Chapter 4. Installation Walkthroughs

http://www.gevent.org/
https://docs.gunicorn.org/en/stable/settings.html#worker-connections
https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-debian9-ice36.html

OMERO.web Installation doc Documentation, Release 0.1.0

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

4.5.2 Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-py-
→˓debian9/releases/download/0.2.0/zeroc_ice-3.6.5-cp35-cp35m-linux_x86_64.whl

Install OMERO.web:

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

4.5.3 Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via
pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

4.5.4 Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an
attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automat-
ically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/
→˓omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn
is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO
processes. You can check their status or stop them using omero web status or omero web stop.

4.5. OMERO.web installation on Debian 9 and IcePy 3.6 39

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/

OMERO.web Installation doc Documentation, Release 0.1.0

• Session engine:

• OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

• Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
→˓cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

• After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.
→˓backends.cache

• Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be
changed by setting omero.web.prefix and omero.web.static_url. For example, to
make OMERO.web appear at http://example.org/omero/ :

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of developers/index.html#web_index develop-
ers documentation. For the full list, refer to Configuration properties.

The most popular configuration options include:

• Debug mode, see omero.web.debug.

• Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.
login_logo) or use an index page as an alternative landing page for users (omero.web.
index_template). See OMERO.web UI customization for further information.

• Enabling a public user see Publishing data using OMERO.web.

4.5.5 Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin:$PATH:

• omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

• omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For ex-
ample to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
→˓omero/web/omero-web/var/log/error.log"

40 Chapter 4. Installation Walkthroughs

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions
https://redis.io/
https://github.com/jazzband/django-redis/
https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index
https://docs.gunicorn.org/en/stable/settings.html

OMERO.web Installation doc Documentation, Release 0.1.0

4.5.6 Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your
OMERO.web installation. This can be achieved using the django-cors-headers app with additional configuration of
OMERO.web. See the django-cors-headers page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins
in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
→˓middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.
→˓middleware.CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

4.5.7 Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
mv /etc/nginx/sites-available/default /etc/nginx/sites-available/default.disabled
if [-f /etc/nginx/sites-enabled/default]; then

rm /etc/nginx/sites-enabled/default
fi
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable
HTTPS. As an alternative to manually modifying the generated file you can generate a minimal configuration and
include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-
→˓location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration
and your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the sysadmins/server-security.html page.

4.5. OMERO.web installation on Debian 9 and IcePy 3.6 41

https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers
https://nginx.org/en/docs/http/configuring_https_servers.html
https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html

OMERO.web Installation doc Documentation, Release 0.1.0

4.5.8 Running OMERO.web

The following steps are run as root.

Install WhiteNoise:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
→˓RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.
→˓middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

4.5.9 Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-
web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
chkconfig: - 98 02
description: init file for OMERO.web
###

RETVAL=0

(continues on next page)

42 Chapter 4. Installation Walkthroughs

http://whitenoise.evans.io/
https://github.com/jazzband/django-redis

OMERO.web Installation doc Documentation, Release 0.1.0

(continued from previous page)

prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
echo -n $"Starting $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web start" &> /dev/null && echo -n ' OMERO.web'
sleep 5
RETVAL=$?
["$RETVAL" = 0]

echo
}

stop() {
echo -n $"Stopping $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web stop" &> /dev/null && echo -n ' OMERO.web'
RETVAL=$?
["$RETVAL" = 0]

echo
}

status() {
echo -n $"Status $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web status"
RETVAL=$?

}

case "$1" in
start)

start
;;

stop)
stop
;;

restart)
stop
start
;;

status)
status
;;

*)
echo $"Usage: $0 {start|stop|restart|status}"
RETVAL=1

esac
exit $RETVAL

Copy the init.d file, then configure the service:

4.5. OMERO.web installation on Debian 9 and IcePy 3.6 43

OMERO.web Installation doc Documentation, Release 0.1.0

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

service nginx start
service omero-web restart

4.5.10 Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

• Session cookies omero.web.session_expire_at_browser_close:

– A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

– The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

• Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is therefore
the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

4.5.11 Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.
log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

44 Chapter 4. Installation Walkthroughs

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO.web Installation doc Documentation, Release 0.1.0

4.5.12 Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.

Install futures:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

4.5. OMERO.web installation on Debian 9 and IcePy 3.6 45

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/
https://docs.gunicorn.org/en/stable/settings.html#worker-connections

OMERO.web Installation doc Documentation, Release 0.1.0

4.6 OMERO.web installation on Debian 10 and IcePy 3.6

Please first read server installation on Debian 10.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

4.6.1 Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update

apt-get -y install unzip

apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

4.6.2 Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-
→˓debian10/releases/download/0.1.0/zeroc_ice-3.6.5-cp37-cp37m-linux_x86_64.whl

Install OMERO.web:

46 Chapter 4. Installation Walkthroughs

https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-debian10-ice36.html

OMERO.web Installation doc Documentation, Release 0.1.0

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

4.6.3 Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via
pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

4.6.4 Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an
attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automat-
ically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/
→˓omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn
is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO
processes. You can check their status or stop them using omero web status or omero web stop.

• Session engine:

• OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

• Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
→˓cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

• After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.
→˓backends.cache

• Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be
changed by setting omero.web.prefix and omero.web.static_url. For example, to
make OMERO.web appear at http://example.org/omero/ :

4.6. OMERO.web installation on Debian 10 and IcePy 3.6 47

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions
https://redis.io/
https://github.com/jazzband/django-redis/

OMERO.web Installation doc Documentation, Release 0.1.0

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of developers/index.html#web_index develop-
ers documentation. For the full list, refer to Configuration properties.

The most popular configuration options include:

• Debug mode, see omero.web.debug.

• Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.
login_logo) or use an index page as an alternative landing page for users (omero.web.
index_template). See OMERO.web UI customization for further information.

• Enabling a public user see Publishing data using OMERO.web.

4.6.5 Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin:$PATH:

• omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

• omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For ex-
ample to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
→˓omero/web/omero-web/var/log/error.log"

4.6.6 Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your
OMERO.web installation. This can be achieved using the django-cors-headers app with additional configuration of
OMERO.web. See the django-cors-headers page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins
in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
→˓middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.
→˓middleware.CorsPostCsrfMiddleware"}'

(continues on next page)

48 Chapter 4. Installation Walkthroughs

https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index
https://docs.gunicorn.org/en/stable/settings.html
https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers

OMERO.web Installation doc Documentation, Release 0.1.0

(continued from previous page)

omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

4.6.7 Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable
HTTPS. As an alternative to manually modifying the generated file you can generate a minimal configuration and
include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-
→˓location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration
and your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the sysadmins/server-security.html page.

4.6.8 Running OMERO.web

The following steps are run as root.

Install WhiteNoise:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
→˓RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

4.6. OMERO.web installation on Debian 10 and IcePy 3.6 49

https://nginx.org/en/docs/http/configuring_https_servers.html
https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html
http://whitenoise.evans.io/
https://github.com/jazzband/django-redis

OMERO.web Installation doc Documentation, Release 0.1.0

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.
→˓middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

4.6.9 Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-
web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
chkconfig: - 98 02
description: init file for OMERO.web
###

RETVAL=0
prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
echo -n $"Starting $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web start" &> /dev/null && echo -n ' OMERO.web'
sleep 5
RETVAL=$?
["$RETVAL" = 0]

echo
}

stop() {

(continues on next page)

50 Chapter 4. Installation Walkthroughs

OMERO.web Installation doc Documentation, Release 0.1.0

(continued from previous page)

echo -n $"Stopping $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web stop" &> /dev/null && echo -n ' OMERO.web'
RETVAL=$?
["$RETVAL" = 0]

echo
}

status() {
echo -n $"Status $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO}

→˓web status"
RETVAL=$?

}

case "$1" in
start)

start
;;

stop)
stop
;;

restart)
stop
start
;;

status)
status
;;

*)
echo $"Usage: $0 {start|stop|restart|status}"
RETVAL=1

esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

service nginx start
service omero-web restart

4.6. OMERO.web installation on Debian 10 and IcePy 3.6 51

OMERO.web Installation doc Documentation, Release 0.1.0

4.6.10 Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

• Session cookies omero.web.session_expire_at_browser_close:

– A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

– The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

• Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is therefore
the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

4.6.11 Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.
log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

4.6.12 Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

52 Chapter 4. Installation Walkthroughs

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html

OMERO.web Installation doc Documentation, Release 0.1.0

Experimental: Sync workers

The following steps are run as root.

Install futures:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

4.7 Publishing data using OMERO.web

The OMERO.web framework allows raw data to be published using built-in tools or supplied through web services to
external web pages. Selected datasets can be made visible to a ‘public user’ using the standard OMERO permissions
system, ensuring you always have control over how users can interact with your data.

There are several ways of publishing data using OMERO.web:

• using a URL to launch the web-based Image viewer, as described in ViewPort, which can be accompanied by a
thumbnail. For more details of how to load the thumbnail, see WebGateway.

• embedding the image viewport directly into other web pages, for more details see ViewPort

• allowing public access to the OMERO.web data manager

• writing your own app to host your public data (see CreateApp) and then allowing public access to the chosen
URL for that app

The sections below describe how you might use these features and how to set them up.

4.7. Publishing data using OMERO.web 53

https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/
https://docs.gunicorn.org/en/stable/settings.html#worker-connections
https://docs.openmicroscopy.org/omero/latest/developers/Web/ViewPort.html#launching-web-viewer
https://docs.openmicroscopy.org/omero/latest/developers/Web/WebGateway.html#urls-from-within-omero-web
https://docs.openmicroscopy.org/omero/latest/developers/Web/ViewPort.html#embedding_web_viewport
https://docs.openmicroscopy.org/omero/latest/developers/Web/CreateApp.html

OMERO.web Installation doc Documentation, Release 0.1.0

4.7.1 Configuring public user

The OMERO.web framework supports auto-login for a single username / password. This means that any public
visitors to certain OMERO.web pages will be automatically logged in and will be able to access the data available to
the defined ‘public user’.

To set this up on your OMERO.web installation:

• Create a group with read-only permissions (the name can be anything e.g. “public-data”). We recommend read-
only permissions so that the public user will not be able to modify, delete or annotate data belonging to other
members.

• Create a member of this group, noting the username and password (you will enter these below). Again, the First
name, Last name, Username and Password can be anything you like.

Note: If you add this member to other groups, all data in these groups will also become publicly accessible for
as long as this user remains in the group.

• Enable the omero.web.public.enabled property and set omero.web.public.user and omero.
web.public.password:

$ omero config set omero.web.public.enabled True

$ omero config set omero.web.public.user '<username>'

$ omero config set omero.web.public.password '<password>'

• By default the public user is only allowed to perform GET requests. This means that the public user will not be
able to Create, Edit or Delete data, as these require POST requests. If you want to allow these actions from the
public user, you can change the omero.web.public.get_only property:

$ omero config set omero.web.public.get_only false

• Set the omero.web.public.url_filter. This filter is a regular expression that will allow only matching
URLs to be accessed by the public user. If this is not set, no URLs will be publicly available.

You need to configure the url_filter to allow all URLs that are required for the pages you wish to be public but
to block any URLs that you do not want public users to access.

Some examples are listed below:

– To allow all URLs from a single app, such as ‘webgateway’, use a filter for URLs that start with the app
name. For example:

$ omero config set omero.web.public.url_filter '^/webgateway'

This filter permits all URLs needed for the full image viewer. If you wish to block webgateway URLs for
downloading data, use:

$ omero config set omero.web.public.url_filter '^/webgateway/(?!archived_
→˓files|download_as)'

– You may need to allow access to additional URLs for some apps. For example, the OMERO.iviewer also
uses some webgateway and api URLs:

$ omero config set omero.web.public.url_filter '^/iviewer|webgateway|api'

54 Chapter 4. Installation Walkthroughs

https://www.openmicroscopy.org/omero/iviewer/

OMERO.web Installation doc Documentation, Release 0.1.0

– You can use the full webclient UI for public browsing of images. Attempts by public user to create, edit or
delete data will fail silently with the default omero.web.public.get_only setting above. You may
also choose to disable various dialogs for these actions such as launching scripts or OME-TIFF export, for
example:

$ omero config set omero.web.public.url_filter '^/(webadmin/myphoto/
→˓|webclient/(?!(script_ui|ome_tiff|figure_script))|webgateway/(?!(archived_
→˓files|download_as))|iviewer|api)'

• Set the omero.web.public.server_id which the public user will be automatically connected to. De-
fault: 1 (the first server in the omero.web.server_list):

$ omero config set omero.web.public.server_id 1

If you enable public access to the main webclient but still wish registered users to be able to log in, the login page can
always be accessed using a link of the form https://your_host/webclient/login/.

4.7.2 Full example of hosting data for a publication

Putting the pieces of this puzzle together, the following describes the steps of a complete workflow for using OMERO
to host public data associated with a publication. It is illustrated using an example publication from the Swedlow lab
in Dundee, Schleicher et al, 2017 with the data hosted at https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017.

Ansible playbooks can be found describing how the production server in Dundee (“nightshade”) was configured in the
prod-playbooks repository on GitHub.

Group setup

A group-per-publication allows the public user to be selectively added (or removed) from given publications to decide
their visibility.

1. Create a dedicated read-only group to host the raw data underlying the publication (see cli/usergroup).

2. Add all the authors of the paper to this new group.

3. Once you have configured OMERO.web to create a public user (see below), add the public user as a member of
the newly created read-only group.

Configuring OMERO.web

If you wish to have an automatically logged-in public user while still giving your existing OMERO users an unchanged
user experience (i.e. not automatically logging them in as the public user), a dedicated, separate web server for
servicing the public workflows can be added and configured to point at your existing OMERO.server. This is the
workflow adopted here by adding a public OMERO.web at https://omero.lifesci.dundee.ac.uk, without changing the
existing internal OMERO.web.

1. Follow the steps in Configuring public user above on the chosen OMERO.web.

2. Also configure the filter on the public user on the chosen OMERO.web by setting omero.web.public.
url_filter to allow ‘webclient’ so that the full webclient is visible for the public user, and thus the Data tree
with Projects and Datasets is also browsable, as well as the Tags tab and the full image viewer.

4.7. Publishing data using OMERO.web 55

http://dx.doi.org/10.1098/rsob.170099
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017
https://github.com/ome/prod-playbooks
https://docs.openmicroscopy.org/omero/latest/cli/usergroup
https://docs.openmicroscopy.org/omero/latest/unix/install-web/web-deployment
https://omero.lifesci.dundee.ac.uk

OMERO.web Installation doc Documentation, Release 0.1.0

Data migration

The data to be made public will need to be in the publication group to be considered “published”.

1. Move the original images into the dedicated group using OMERO.web or OMERO.cli. The CLI is best used
where Images or Datasets are cross-linked to other Datasets or Projects in the original group. The command
omero chgrp Project:$ID --include Dataset,Image cuts the cross-links in the original group
and preserves the Project/Dataset/Image hierarchy prepared for the move by the author.

2. If you have used OMERO.figure to create your figures for publication, you can always find the original data
by using the ‘info’ tab, as shown in the OMERO.figure Help guide (OMERO.figure supports a complete figure
creation workflow, including exporting figures into image processing applications for final adjustments - see the
OMERO.figure Help guide for full details).

3. Having all the data belong to one user simplifies the UI experience for public users. If necessary, ownership of
data can be transferred using the ‘Chown’ privilege (see sysadmins/restricted-admins and users/cli/chown).

Data layout

Once the data is in the dedicated read-only group, it can be reorganized and renamed to reflect the publication e.g.
Projects can be renamed according to the corresponding figure panels in the manuscript while the names of the Datasets
could be retained corresponding to different treatment conditions represented in each figure panel. For example,
Project Schleicher_etal_figure7_c contains images underlying the publication Figure panel 7(c). Some Projects under-
lie two publication figure panels, such as Project Schleicher_etal_figure2_a_c where representative images are shown
in panel (a) and the corresponding quantification is shown in panel (c) of Figure 2. This makes clear which original
images are underlying which figure panels in the publication.

Data can also be tagged with OMERO tags to enhance the browsing possibilities through these data for any user with
basic knowledge of OMERO. For example, see Tag:Schleicher_etal_figure1_a. The tags are highlighting the images
displayed in the publication figures as images. The other, non-tagged images in the group are the ones used for analysis
which produced the published numerical data.

Key-Value pairs can be used to add more detailed information about the study and publication. For example, go to
Schleicher_etal_figure1_a and expand the ‘Key-Value Pairs’ section in the right-hand pane to display the content (see
the Managing data guide for information on using Key-Value pairs).

Configuring URLs

The URL of the first Project (corresponding to the first figure in the publication) can be used for a DOI and data
landing page. For example, Project ‘Schleicher_etal_figure1_a’ https://omero.lifesci.dundee.ac.uk/webclient/?show=
project-27936 corresponds to http://dx.doi.org/10.17867/10000109.

Optionally, you can decide on a set pattern of URLs for this and future publications. For example, in Dundee we
have established a pattern which supposes every new publication from our institution will be in a separate group,
and this group will be directly navigable by the public user using the syntax: “server-address/pub/publication-
identifier”. This means for example, https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017 is the link where
“omero.lifesci.dundee.ac.uk” is the server address, and “schleicher-et-al-2017” is the publication-identifier.

This makes use of redirects allowing https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017 to link to the correct
group and Project in OMERO, just as the DOI above does. Redirects need to be set in the NGINX component of the
OMERO.web installation dedicated to publication workflows. You can find our configuration for this example here on
GitHub:

location /pub/schleicher-et-al-2017 {
return 307 /webclient/?show=project-27936;

}

56 Chapter 4. Installation Walkthroughs

https://docs.openmicroscopy.org/omero/latest/users/cli/chgrp
https://help.openmicroscopy.org/figure.html#info
https://help.openmicroscopy.org/figure.html
https://docs.openmicroscopy.org/omero/latest/sysadmins/restricted-admins
https://docs.openmicroscopy.org/omero/latest/users/cli/chown
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27920
https://royalsocietypublishing.org/cms/attachment/36fd7495-4d87-454f-952e-a581da261f71/rsob170099f07.jpg
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27917
https://royalsocietypublishing.org/cms/attachment/aac23d26-2197-4dc1-8f85-7bb5686f926d/rsob170099f02.jpg
https://omero.lifesci.dundee.ac.uk/webclient/?show=tag-364188
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936
https://help.openmicroscopy.org/managing-data.html#keyvalue
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936
http://dx.doi.org/10.17867/10000109
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017
https://nginx.org/
https://github.com/ome/prod-playbooks/blob/2018-01/nightshade-webclients.yml#L181
https://github.com/ome/prod-playbooks/blob/2018-01/nightshade-webclients.yml#L181

OMERO.web Installation doc Documentation, Release 0.1.0

4.8 OMERO.web UI customization

The OMERO.web offer a flexible user interface that can be customized. The sections below describe how to set up
these features.

Note that depending on the deployment choice, OMERO.web will not activate configuration changes until Gunicorn
is restarted using omero web restart.

4.8.1 Index page

This allows you to add a homepage at <your-omero-server>/index/. Visitors to your root url at <your-omero-server>/
will get redirected here instead of redirecting to <your-omero-server>/webclient/.

Create new custom template in /your/path/to/templates/mytemplate/index.html and add the fol-
lowing:

$ omero config append omero.web.template_dirs '"/your/path/to/templates/"'
$ omero config set omero.web.index_template 'mytemplate/index.html'

4.8.2 Login page logo

omero.web.login_logo allows you to customize the webclient login page with your own logo. Logo images
should ideally be 150 pixels high or less and will appear above the OMERO logo. You will need to host the image
somewhere else and link to it with:

$ omero config set omero.web.login_logo 'http://www.url/to/image.png'

4.8.3 Login redirection

omero.web.login_redirect property redirects to the given location after logging in to named pages. In the
example below, a user who tries to visit the "webindex" URL (/webclient/) will be redirected after login to
a URL defined by the viewname "load_template". The "args" are additional arguments to pass to Django’s
reverse() function and the "query_string" will be added to the URL:

$ omero config set omero.web.login_redirect '{"redirect": ["webindex"], "viewname":
→˓"load_template", "args":["userdata"], "query_string": "experimenter=-1"}'

4.8.4 Top links menu

omero.web.ui.top_links adds links to the top header:

$ omero config append omero.web.ui.top_links '["Figure", "figure_index", {"title":
→˓"Open Figure in new tab", "target": "_blank"}]'
$ omero config append omero.web.ui.top_links '["GRE", "http://lifesci.dundee.ac.uk/gre
→˓"]'

4.8. OMERO.web UI customization 57

OMERO.web Installation doc Documentation, Release 0.1.0

58 Chapter 4. Installation Walkthroughs

OMERO.web Installation doc Documentation, Release 0.1.0

4.8.5 Open With option

omero.web.open_with adds items to the ‘Open with’ options. This allows users to open selected images or other
data with another web app or URL. See LinkingFromWebclient.

4.8.6 Include template in every page

An HTML template specified by omero.web.base_include_template will be included in every HTML page
in OMERO.web. The template is inserted just before the </body> tag and can be used for adding a <script> such
as Google analytics.

For example, create a file called /your/path/to/templates/base_include.html with:

<script>
console.log("Hello World");

</script>

Set the following:

$ omero config append omero.web.template_dirs '"/your/path/to/templates/"'
$ omero config set omero.web.base_include_template 'base_include.html'

4.8.7 Group and Users in dropdown menu

Customize the groups and users dropdown menu by changing the labels or hiding the entire list:

$ omero config set omero.client.ui.menu.dropdown.leaders.label "Owners"
$ omero config set omero.client.ui.menu.dropdown.leaders.enabled true
$ omero config set omero.client.ui.menu.dropdown.colleagues.label "Members"
$ omero config set omero.client.ui.menu.dropdown.colleagues.enabled true
$ omero config set omero.client.ui.menu.dropdown.everyone.label "All Members"
$ omero config set omero.client.ui.menu.dropdown.everyone.enabled false

4.8.8 Orphaned container

omero.client.ui.tree.orphans.name allows you to change the name of the “Orphaned images” container
located in the client data manager tree:

$ omero config set omero.client.ui.tree.orphans.name "Orphaned images"

4.8.9 Disabling scripts

omero.client.scripts_to_ignore hides the scripts that the clients should not display:

$ omero config append omero.client.scripts_to_ignore "/my_scripts/script.py"

4.8. OMERO.web UI customization 59

https://docs.openmicroscopy.org/omero/latest/developers/Web/LinkingFromWebclient.html

OMERO.web Installation doc Documentation, Release 0.1.0

60 Chapter 4. Installation Walkthroughs

OMERO.web Installation doc Documentation, Release 0.1.0

4.8.10 Download restrictions

omero.policy.binary_access determines whether users can access binary files from disk. Binary access
includes all attempts to download a file from the UI:

$ omero config set -- omero.policy.binary_access +read,+write,+image

or on a specific group with ID 15:

$ omero group info 15
$ omero obj map-set ExperimenterGroup:15 config -- omero.policy.binary_access +read,
→˓+write,+image

4.9 OMERO.web upgrade

The OME team is committed to providing frequent, project-wide upgrades with security fixes, bug fixes and new
functionality. We try to make the schedule for these releases as public as possible. You may want to take a look at the
Trello boards for exactly what will go into a release. See also server-upgrade.

See the full details of OMERO.web features in the CHANGELOG.

This guide aims to be as definitive as possible so please do not be put off by the level of detail; upgrading should be a
straightforward process.

4.9. OMERO.web upgrade 61

https://trello.com/b/4EXb35xQ/getting-started
https://docs.openmicroscopy.org/omero/latest/sysadmins/server-upgrade.html
https://github.com/ome/omero-web/blob/master/CHANGELOG.md

OMERO.web Installation doc Documentation, Release 0.1.0

4.9.1 Upgrade checklist

• Check prerequisites

• Upgrade

• Configuration

• Plugin updates

• Restart OMERO.web

• Troubleshooting

• Maintenance & Scaling

Check prerequisites

Before starting the upgrade, please ensure that you have reviewed and satisfied all the system requirements with correct
versions for installation.

Upgrade

Make sure you have activated the correct virtual environment then upgrade OMERO.web via pip:

$ pip install --upgrade omero-web

If the omero-web upgrade requires an upgrade to omero-py (e.g. for new features), this will happen automatically
above. However, even when an omero-py upgrade is not required, there may be some benefits to upgrading:

$ pip install --upgrade omero-py

Configuration

We now recommend that omero-web is installed in a separate python virtual environment.

If you are migrating to a new virtual environment, where $OMERODIR does not refer to a server with an existing
config, you will need to export and re-import the configuration from your previous installation.

OLD_INSTALLATION/bin/omero config get --show-password > properties.backup

omero-web virtual env
omero config load properties.backup

If you generated configuration stanzas using omero web config which enables OMERO.web via NGINX, you
should regenerate your config files, remembering to merge in any of your own modifications if necessary. You should
carry out this step even for minor version upgrades as there may be fixes which require it.

omero web config nginx > new.confg

More examples can be found under Configuration.

62 Chapter 4. Installation Walkthroughs

https://docs.openmicroscopy.org/omero/latest/sysadmins/system-requirements.html
https://docs.openmicroscopy.org/omero/latest/sysadmins/version-requirements.html
https://docs.openmicroscopy.org/omero/latest/sysadmins/version-requirements.html

OMERO.web Installation doc Documentation, Release 0.1.0

Plugin updates

OMERO.web plugins are very closely integrated into the webclient. For this reason, it is possible that an update of
OMERO will cause issues with an older version of a plugin. It is best when updating the server to also install any
available plugin updates according to their own documentation.

All official OMERO.web plugins can be installed from PyPI. You should remove all previously installed plugins and
install the latest versions using pip.

Restart OMERO.web

Finally, restart OMERO.web with the following command:

$ omero web restart

Troubleshooting

If you encounter errors during an OMERO.web upgrade, etc., you should retain as much log information as possible,
including the output of omero web diagnostics to the OMERO team via the mailing lists available on the
support page.

Maintenance & Scaling

If you have not already done so, there are a number of additional steps that can be performed on your OMERO.web
installation to improve its functioning. For example, you may need to set up a regular task to clear out any stale
OMERO.web session files. More information can be found in the various walkthroughs available from OMERO.web
installation and maintenance.

Additionally, it is recommended to use a WSGI-capable server such as NGINX. Information can be found under
OMERO.web installation and maintenance.

Note: Support for Apache deployment has been dropped in 5.3.0.

If your organization’s policies only allow Apache to be used as the external-facing web-server you should configure
Apache to proxy connections to an NGINX instance running on your OMERO server i.e. use Apache as a reverse
proxy. For more details see Apache mod_proxy documentation.

4.9. OMERO.web upgrade 63

https://pypi.org
https://www.openmicroscopy.org/support
https://httpd.apache.org/docs/current/mod/mod_proxy.html

OMERO.web Installation doc Documentation, Release 0.1.0

64 Chapter 4. Installation Walkthroughs

INDEX

Symbols
$OMERODIR, 62

E
environment variable

$OMERODIR, 62
OMERO_HOME, 9, 17, 23, 31, 38, 46
OMERODIR, 9, 17, 23, 31, 38, 46

O
OMERO_HOME, 9, 17, 23, 31, 38, 46
OMERODIR, 9, 17, 23, 31, 38, 46

65

	Configuration
	Upgrading
	Optimizing OMERO as a Data Repository
	Installation Walkthroughs
	Index

