

OMERO.web installation and maintenance

OMERO.web is a Python 3 client of the OMERO platform that provides a
web-based UI and JSON API.
This section provides links to detailed step-by-step walkthroughs describing how to install, customize, maintain and run OMERO.web for several systems.
OMERO.web is installed separately from the OMERO.server.

OMERO.web can be deployed with:

	WSGI [https://wsgi.readthedocs.org] using a WSGI capable web server
such as
NGINX [https://nginx.org/] and Gunicorn [https://docs.gunicorn.org/]

	the built-in Django lightweight development server. This type of deployment should only be used for testing purpose
only; see the Developers Deployment [https://docs.openmicroscopy.org/omero/latest/developers/Web/Deployment.html] page.

If you need help configuring your firewall rules, see
Security [https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html] for more details.

Depending upon which platform you are using, you may find a
more specific walkthrough listed below. The guides use the example of deploying OMERO.web with
NGINX [https://nginx.org/] and Gunicorn [https://docs.gunicorn.org/].
OMERO can automatically generate a
configuration file for your webserver. The location of the file will depend
on your system, please refer to your webserver’s manual. See in the section Customizing your OMERO.web installation in the various walkthroughs for more options.

Configuration

You will find in the various guides how to create the NGINX OMERO configuration file
and the configuration steps for the NGINX and Gunicorn.
Advanced Gunicorn setups are also described to enable the download of binary data
and to handle multiple clients on a single worker
thread switching context as necessary while streaming binary data from
OMERO.server. Depending on the traffic and scale of the repository you should
configure connections and speed limits on your server to avoid blocking
resources.

To set the various OMERO.web properties, check the
OMERO.web configuration glossary [https://docs.openmicroscopy.org/omero/latest/sysadmins/config.html#web].

Upgrading

Starting with OMERO 5.6, OMERO.server and OMERO.web installations are assumed to be separate throughout documentation, each with its own virtualenv and installation directory.

OMERO.web upgrade

Optimizing OMERO as a Data Repository

This section explains how to customize the appearance and functionality of OMERO.web to host images for groups or public viewing.

Publishing data using OMERO.web

OMERO.web UI customization

Installation Walkthroughs

Recommended:

	OMERO.web installation on CentOS 7 and IcePy 3.6
	Instructions for installing OMERO.web from scratch on CentOS 7 with Ice 3.6.

	OMERO.web installation on Ubuntu 20.04 and IcePy 3.6
	Instructions for installing OMERO.web from scratch on Ubuntu 20.04 with Ice 3.6.

	OMERO.web installation on Debian 10 and IcePy 3.6
	Instructions for installing OMERO.web from scratch on Debian 10 with Ice 3.6.

Others:

	OMERO.web installation on CentOS 8 and IcePy 3.6
	Instructions for installing OMERO.web from scratch on CentOS 8 with Ice 3.6.

	OMERO.web installation on Ubuntu 18.04 and IcePy 3.6
	Instructions for installing OMERO.web from scratch on Ubuntu 18.04 with Ice 3.6.

	OMERO.web installation on Debian 9 and IcePy 3.6
	Instructions for installing OMERO.web from scratch on Debian 9 with Ice 3.6.

Note

Support for Apache deployment has been dropped in 5.3.0.

If your organization’s policies only allow Apache to be used as the external-facing web-server you should configure Apache to proxy connections to an NGINX instance running on your OMERO server i.e. use Apache as a reverse proxy. For more details see
Apache mod_proxy documentation [https://httpd.apache.org/docs/current/mod/mod_proxy.html].

OMERO.web installation on CentOS 7 and IcePy 3.6

Please first read server installation on CentOS 7 [https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-centos7-ice36.html].

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user. Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use the omero-web system user and define the main OMERO.web configuration options as environment variables. Since 5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.

Install dependencies:

yum -y install epel-release

yum -y install unzip

yum -y install python3

yum -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

yum -y install redis

systemctl enable redis.service

systemctl start redis.service

Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-py-centos7/releases/download/0.2.1/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Install OMERO.web:

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure [https://www.openmicroscopy.org/omero/figure/] and OMERO.iviewer [https://www.openmicroscopy.org/omero/iviewer/]. See the main website for a list of released apps [https://www.openmicroscopy.org/omero/apps/]. These apps are optional and can be installed, as the root user, via pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes. You can check their status or stop them using omero web status or omero web stop.

	Session engine:

	OMERO.web offers alternative session backends to automatically delete stale data using the cache session store backend, see Django cached session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions] for more details.

	Redis [https://redis.io/] requires django-redis [https://github.com/jazzband/django-redis/] in order to be used with OMERO.web. We assume that Redis has already been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

	After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.cache

	Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver.
This can be changed by setting omero.web.prefix and
omero.web.static_url. For example, to make OMERO.web appear at
http://example.org/omero/:

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of
developers/index.html#web_index [https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index] developers documentation. For the full list, refer to
Configuration properties.

The most popular configuration options include:

	Debug mode, see omero.web.debug.

	Customizing OMERO clients e.g. to add your own logo to the login page
(omero.web.login_logo) or use an index page as an alternative
landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

	Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export PATH=/opt/omero/web/venv3/bin:$PATH:

	omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note

Do not scale the number of workers to the number of clients
you expect to have. OMERO.web should only need 4-12 worker
processes to handle many requests per second.

	omero.web.wsgi_args Additional arguments. For more details
check Gunicorn Documentation [https://docs.gunicorn.org/en/stable/settings.html]. For example to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/omero/web/omero-web/var/log/error.log"

Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your OMERO.web installation. This can be achieved using the django-cors-headers [https://github.com/adamchainz/django-cors-headers] app with additional configuration of OMERO.web. See the django-cors-headers [https://github.com/adamchainz/django-cors-headers] page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
if [-f /etc/nginx/conf.d/default.conf]; then
 mv /etc/nginx/conf.d/default.conf /etc/nginx/conf.d/default.disabled
fi
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

systemctl enable nginx

systemctl start nginx

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS [https://nginx.org/en/docs/http/configuring_https_servers.html]. As an alternative to manually modifying the generated file you can generate a minimal configuration and include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and your additional configuration settings will still apply.

Note

If you need help configuring your firewall rules, see the
sysadmins/server-security.html [https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html] page.

Running OMERO.web

The following steps are run as root.

Install WhiteNoise [http://whitenoise.evans.io/]:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis [https://github.com/jazzband/django-redis]:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a systemd.service file could be created. See below an example file omero-web-systemd.service:

[Unit]
Description=OMERO.web
Not mandatory, NGINX may be running on a different server
Requires=nginx.service
After=network.service

[Service]
User=omero-web
Type=forking
PIDFile=/opt/omero/web/omero-web/var/django.pid
Restart=no
RestartSec=10
Environment="PATH=/opt/omero/web/venv3/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin"
Environment="OMERODIR=/opt/omero/web/omero-web"
ExecStart=/opt/omero/web/venv3/bin/omero web start
ExecStop=/opt/omero/web/venv3/bin/omero web stop

[Install]
WantedBy=multi-user.target

Copy the systemd.service file, then enable and start the service:

cp omero-web-systemd.service /etc/systemd/system/omero-web.service

systemctl daemon-reload

systemctl enable omero-web.service

systemctl stop omero-web.service

systemctl start omero-web.service

Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

	Session cookies omero.web.session_expire_at_browser_close:

	A boolean that determines whether to expire the session when the user
closes their browser.
See Django Browser-length sessions vs. persistent
sessions documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions]
for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

	The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

	Clear session:

Each session for a logged-in user in OMERO.web is kept in the session
store. Stale sessions can cause the store to grow with time. OMERO.web
uses by default the OS file system as the session store backend and
does not automatically purge stale sessions, see
Django file-based session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions] for more details. It is therefore the responsibility of the OMERO
administrator to purge the session cache using the provided management command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example
as a daily cron job, see
Django clearing the session store documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store] for more information.

Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you should configure connections and speed limits on your server to avoid blocking resources. We recommend you run benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to binary data.

Note

Handling streaming request/responses requires proxy buffering
to be turned off. For more details refer to
Gunicorn deployment [https://docs.gunicorn.org/en/stable/deploy.html]
and
NGINX configuration [https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering].

Note

omero.web.application_server.max_requests should be set to 0

See
Gunicorn design [https://docs.gunicorn.org/en/stable/design.html] for more details.

Experimental: Sync workers

The following steps are run as root.

Install futures [https://pypi.org/project/futures]:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads [https://docs.gunicorn.org/en/stable/settings.html#threads]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13 [http://www.gevent.org/]:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections [https://docs.gunicorn.org/en/stable/settings.html#worker-connections]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

SELinux

The following steps are run as root.

If you are running a system with SELinux enabled [https://wiki.centos.org/HowTos/SELinux] and are unable to access OMERO.web you may need to adjust the security policy:

if [$(getenforce) != Disabled]; then

 yum -y install policycoreutils-python
 setsebool -P httpd_read_user_content 1
 setsebool -P httpd_enable_homedirs 1
 semanage port -a -t http_port_t -p tcp 4080

fi

OMERO.web installation on CentOS 8 and IcePy 3.6

Please first read server installation on CentOS 8 [https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-centos8-ice36.html].

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user. Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use the omero-web system user and define the main OMERO.web configuration options as environment variables. Since 5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.

Install dependencies:

yum -y install epel-release

yum -y install unzip

yum -y install python3

yum -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

yum -y install redis python3-redis

systemctl enable redis.service

systemctl start redis.service

Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-centos8/releases/download/0.0.1/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Install OMERO.web:

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure [https://www.openmicroscopy.org/omero/figure/] and OMERO.iviewer [https://www.openmicroscopy.org/omero/iviewer/]. See the main website for a list of released apps [https://www.openmicroscopy.org/omero/apps/]. These apps are optional and can be installed, as the root user, via pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes. You can check their status or stop them using omero web status or omero web stop.

	Session engine:

	OMERO.web offers alternative session backends to automatically delete stale data using the cache session store backend, see Django cached session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions] for more details.

	Redis [https://redis.io/] requires django-redis [https://github.com/jazzband/django-redis/] in order to be used with OMERO.web. We assume that Redis has already been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

	After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.cache

	Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver.
This can be changed by setting omero.web.prefix and
omero.web.static_url. For example, to make OMERO.web appear at
http://example.org/omero/:

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of
developers/index.html#web_index [https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index] developers documentation. For the full list, refer to
Configuration properties.

The most popular configuration options include:

	Debug mode, see omero.web.debug.

	Customizing OMERO clients e.g. to add your own logo to the login page
(omero.web.login_logo) or use an index page as an alternative
landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

	Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export PATH=/opt/omero/web/venv3/bin:$PATH:

	omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note

Do not scale the number of workers to the number of clients
you expect to have. OMERO.web should only need 4-12 worker
processes to handle many requests per second.

	omero.web.wsgi_args Additional arguments. For more details
check Gunicorn Documentation [https://docs.gunicorn.org/en/stable/settings.html]. For example to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/omero/web/omero-web/var/log/error.log"

Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your OMERO.web installation. This can be achieved using the django-cors-headers [https://github.com/adamchainz/django-cors-headers] app with additional configuration of OMERO.web. See the django-cors-headers [https://github.com/adamchainz/django-cors-headers] page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
if [-f /etc/nginx/conf.d/default.conf]; then
 mv /etc/nginx/conf.d/default.conf /etc/nginx/conf.d/default.disabled
fi
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

systemctl enable nginx

systemctl start nginx

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS [https://nginx.org/en/docs/http/configuring_https_servers.html]. As an alternative to manually modifying the generated file you can generate a minimal configuration and include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and your additional configuration settings will still apply.

Note

If you need help configuring your firewall rules, see the
sysadmins/server-security.html [https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html] page.

Running OMERO.web

The following steps are run as root.

Install WhiteNoise [http://whitenoise.evans.io/]:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis [https://github.com/jazzband/django-redis]:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.

Copy the systemd.service file, then enable and start the service:

cp omero-web-systemd.service /etc/systemd/system/omero-web.service

systemctl daemon-reload

systemctl enable omero-web.service

systemctl stop omero-web.service

systemctl start omero-web.service

Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

	Session cookies omero.web.session_expire_at_browser_close:

	A boolean that determines whether to expire the session when the user
closes their browser.
See Django Browser-length sessions vs. persistent
sessions documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions]
for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

	The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

	Clear session:

Each session for a logged-in user in OMERO.web is kept in the session
store. Stale sessions can cause the store to grow with time. OMERO.web
uses by default the OS file system as the session store backend and
does not automatically purge stale sessions, see
Django file-based session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions] for more details. It is therefore the responsibility of the OMERO
administrator to purge the session cache using the provided management command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example
as a daily cron job, see
Django clearing the session store documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store] for more information.

Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you should configure connections and speed limits on your server to avoid blocking resources. We recommend you run benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to binary data.

Note

Handling streaming request/responses requires proxy buffering
to be turned off. For more details refer to
Gunicorn deployment [https://docs.gunicorn.org/en/stable/deploy.html]
and
NGINX configuration [https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering].

Note

omero.web.application_server.max_requests should be set to 0

See
Gunicorn design [https://docs.gunicorn.org/en/stable/design.html] for more details.

Experimental: Sync workers

The following steps are run as root.

Install futures [https://pypi.org/project/futures]:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads [https://docs.gunicorn.org/en/stable/settings.html#threads]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13 [http://www.gevent.org/]:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections [https://docs.gunicorn.org/en/stable/settings.html#worker-connections]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

SELinux

The following steps are run as root.

If you are running a system with SELinux enabled [https://wiki.centos.org/HowTos/SELinux] and are unable to access OMERO.web you may need to adjust the security policy:

if [$(getenforce) != Disabled]; then

 yum -y install policycoreutils-python
 setsebool -P httpd_read_user_content 1
 setsebool -P httpd_enable_homedirs 1
 semanage port -a -t http_port_t -p tcp 4080

fi

OMERO.web installation on Ubuntu 18.04 and IcePy 3.6

Please first read server installation on Ubuntu 18.04 [https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-ubuntu1804-ice36.html].

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user. Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use the omero-web system user and define the main OMERO.web configuration options as environment variables. Since 5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update

apt-get -y install unzip
apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-ubuntu1804/releases/download/0.2.0/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Install OMERO.web:

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure [https://www.openmicroscopy.org/omero/figure/] and OMERO.iviewer [https://www.openmicroscopy.org/omero/iviewer/]. See the main website for a list of released apps [https://www.openmicroscopy.org/omero/apps/]. These apps are optional and can be installed, as the root user, via pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes. You can check their status or stop them using omero web status or omero web stop.

	Session engine:

	OMERO.web offers alternative session backends to automatically delete stale data using the cache session store backend, see Django cached session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions] for more details.

	Redis [https://redis.io/] requires django-redis [https://github.com/jazzband/django-redis/] in order to be used with OMERO.web. We assume that Redis has already been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

	After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.cache

	Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver.
This can be changed by setting omero.web.prefix and
omero.web.static_url. For example, to make OMERO.web appear at
http://example.org/omero/:

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of
developers/index.html#web_index [https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index] developers documentation. For the full list, refer to
Configuration properties.

The most popular configuration options include:

	Debug mode, see omero.web.debug.

	Customizing OMERO clients e.g. to add your own logo to the login page
(omero.web.login_logo) or use an index page as an alternative
landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

	Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export PATH=/opt/omero/web/venv3/bin:$PATH:

	omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note

Do not scale the number of workers to the number of clients
you expect to have. OMERO.web should only need 4-12 worker
processes to handle many requests per second.

	omero.web.wsgi_args Additional arguments. For more details
check Gunicorn Documentation [https://docs.gunicorn.org/en/stable/settings.html]. For example to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/omero/web/omero-web/var/log/error.log"

Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your OMERO.web installation. This can be achieved using the django-cors-headers [https://github.com/adamchainz/django-cors-headers] app with additional configuration of OMERO.web. See the django-cors-headers [https://github.com/adamchainz/django-cors-headers] page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS [https://nginx.org/en/docs/http/configuring_https_servers.html]. As an alternative to manually modifying the generated file you can generate a minimal configuration and include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and your additional configuration settings will still apply.

Note

If you need help configuring your firewall rules, see the
sysadmins/server-security.html [https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html] page.

Running OMERO.web

The following steps are run as root.

Install WhiteNoise [http://whitenoise.evans.io/]:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis [https://github.com/jazzband/django-redis]:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
Redhat
chkconfig: - 98 02
description: init file for OMERO.web
###

RETVAL=0
prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
 echo -n $"Starting $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web start" &> /dev/null && echo -n ' OMERO.web'
 sleep 5
 RETVAL=$?
 ["$RETVAL" = 0]
 echo
}

stop() {
 echo -n $"Stopping $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web stop" &> /dev/null && echo -n ' OMERO.web'
 RETVAL=$?
 ["$RETVAL" = 0]
 echo
}

status() {
 echo -n $"Status $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web status"
 RETVAL=$?
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 RETVAL=1
esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

cron
service nginx start
service omero-web restart

Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

	Session cookies omero.web.session_expire_at_browser_close:

	A boolean that determines whether to expire the session when the user
closes their browser.
See Django Browser-length sessions vs. persistent
sessions documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions]
for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

	The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

	Clear session:

Each session for a logged-in user in OMERO.web is kept in the session
store. Stale sessions can cause the store to grow with time. OMERO.web
uses by default the OS file system as the session store backend and
does not automatically purge stale sessions, see
Django file-based session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions] for more details. It is therefore the responsibility of the OMERO
administrator to purge the session cache using the provided management command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example
as a daily cron job, see
Django clearing the session store documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store] for more information.

Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you should configure connections and speed limits on your server to avoid blocking resources. We recommend you run benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to binary data.

Note

Handling streaming request/responses requires proxy buffering
to be turned off. For more details refer to
Gunicorn deployment [https://docs.gunicorn.org/en/stable/deploy.html]
and
NGINX configuration [https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering].

Note

omero.web.application_server.max_requests should be set to 0

See
Gunicorn design [https://docs.gunicorn.org/en/stable/design.html] for more details.

Experimental: Sync workers

The following steps are run as root.

Install futures [https://pypi.org/project/futures]:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads [https://docs.gunicorn.org/en/stable/settings.html#threads]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13 [http://www.gevent.org/]:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections [https://docs.gunicorn.org/en/stable/settings.html#worker-connections]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

OMERO.web installation on Ubuntu 20.04 and IcePy 3.6

Please first read server installation on Ubuntu 20.04 [https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-ubuntu2004-ice36.html].

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user. Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use the omero-web system user and define the main OMERO.web configuration options as environment variables. Since 5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation process. By default, Python 3.8 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update

apt-get -y install unzip
apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-ubuntu2004/releases/download/0.2.0/zeroc_ice-3.6.5-cp38-cp38-linux_x86_64.whl

Install OMERO.web:

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure [https://www.openmicroscopy.org/omero/figure/] and OMERO.iviewer [https://www.openmicroscopy.org/omero/iviewer/]. See the main website for a list of released apps [https://www.openmicroscopy.org/omero/apps/]. These apps are optional and can be installed, as the root user, via pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes. You can check their status or stop them using omero web status or omero web stop.

	Session engine:

	OMERO.web offers alternative session backends to automatically delete stale data using the cache session store backend, see Django cached session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions] for more details.

	Redis [https://redis.io/] requires django-redis [https://github.com/jazzband/django-redis/] in order to be used with OMERO.web. We assume that Redis has already been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

	After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.cache

	Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver.
This can be changed by setting omero.web.prefix and
omero.web.static_url. For example, to make OMERO.web appear at
http://example.org/omero/:

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of
developers/index.html#web_index [https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index] developers documentation. For the full list, refer to
Configuration properties.

The most popular configuration options include:

	Debug mode, see omero.web.debug.

	Customizing OMERO clients e.g. to add your own logo to the login page
(omero.web.login_logo) or use an index page as an alternative
landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

	Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export PATH=/opt/omero/web/venv3/bin:$PATH:

	omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note

Do not scale the number of workers to the number of clients
you expect to have. OMERO.web should only need 4-12 worker
processes to handle many requests per second.

	omero.web.wsgi_args Additional arguments. For more details
check Gunicorn Documentation [https://docs.gunicorn.org/en/stable/settings.html]. For example to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/omero/web/omero-web/var/log/error.log"

Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your OMERO.web installation. This can be achieved using the django-cors-headers [https://github.com/adamchainz/django-cors-headers] app with additional configuration of OMERO.web. See the django-cors-headers [https://github.com/adamchainz/django-cors-headers] page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS [https://nginx.org/en/docs/http/configuring_https_servers.html]. As an alternative to manually modifying the generated file you can generate a minimal configuration and include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and your additional configuration settings will still apply.

Note

If you need help configuring your firewall rules, see the
sysadmins/server-security.html [https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html] page.

Running OMERO.web

The following steps are run as root.

Install WhiteNoise [http://whitenoise.evans.io/]:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis [https://github.com/jazzband/django-redis]:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
Redhat
chkconfig: - 98 02
description: init file for OMERO.web
###

RETVAL=0
prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
 echo -n $"Starting $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web start" &> /dev/null && echo -n ' OMERO.web'
 sleep 5
 RETVAL=$?
 ["$RETVAL" = 0]
 echo
}

stop() {
 echo -n $"Stopping $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web stop" &> /dev/null && echo -n ' OMERO.web'
 RETVAL=$?
 ["$RETVAL" = 0]
 echo
}

status() {
 echo -n $"Status $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web status"
 RETVAL=$?
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 RETVAL=1
esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

cron
service nginx start
service omero-web restart

Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

	Session cookies omero.web.session_expire_at_browser_close:

	A boolean that determines whether to expire the session when the user
closes their browser.
See Django Browser-length sessions vs. persistent
sessions documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions]
for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

	The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

	Clear session:

Each session for a logged-in user in OMERO.web is kept in the session
store. Stale sessions can cause the store to grow with time. OMERO.web
uses by default the OS file system as the session store backend and
does not automatically purge stale sessions, see
Django file-based session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions] for more details. It is therefore the responsibility of the OMERO
administrator to purge the session cache using the provided management command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example
as a daily cron job, see
Django clearing the session store documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store] for more information.

Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you should configure connections and speed limits on your server to avoid blocking resources. We recommend you run benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to binary data.

Note

Handling streaming request/responses requires proxy buffering
to be turned off. For more details refer to
Gunicorn deployment [https://docs.gunicorn.org/en/stable/deploy.html]
and
NGINX configuration [https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering].

Note

omero.web.application_server.max_requests should be set to 0

See
Gunicorn design [https://docs.gunicorn.org/en/stable/design.html] for more details.

Experimental: Sync workers

The following steps are run as root.

Install futures [https://pypi.org/project/futures]:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads [https://docs.gunicorn.org/en/stable/settings.html#threads]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13 [http://www.gevent.org/]:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections [https://docs.gunicorn.org/en/stable/settings.html#worker-connections]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

OMERO.web installation on Debian 9 and IcePy 3.6

Please first read server installation on Debian 9 [https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-debian9-ice36.html].

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user. Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use the omero-web system user and define the main OMERO.web configuration options as environment variables. Since 5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation process. By default, Python 3.5 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update

apt-get -y install unzip

apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-py-debian9/releases/download/0.2.0/zeroc_ice-3.6.5-cp35-cp35m-linux_x86_64.whl

Install OMERO.web:

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure [https://www.openmicroscopy.org/omero/figure/] and OMERO.iviewer [https://www.openmicroscopy.org/omero/iviewer/]. See the main website for a list of released apps [https://www.openmicroscopy.org/omero/apps/]. These apps are optional and can be installed, as the root user, via pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes. You can check their status or stop them using omero web status or omero web stop.

	Session engine:

	OMERO.web offers alternative session backends to automatically delete stale data using the cache session store backend, see Django cached session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions] for more details.

	Redis [https://redis.io/] requires django-redis [https://github.com/jazzband/django-redis/] in order to be used with OMERO.web. We assume that Redis has already been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

	After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.cache

	Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver.
This can be changed by setting omero.web.prefix and
omero.web.static_url. For example, to make OMERO.web appear at
http://example.org/omero/:

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of
developers/index.html#web_index [https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index] developers documentation. For the full list, refer to
Configuration properties.

The most popular configuration options include:

	Debug mode, see omero.web.debug.

	Customizing OMERO clients e.g. to add your own logo to the login page
(omero.web.login_logo) or use an index page as an alternative
landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

	Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export PATH=/opt/omero/web/venv3/bin:$PATH:

	omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note

Do not scale the number of workers to the number of clients
you expect to have. OMERO.web should only need 4-12 worker
processes to handle many requests per second.

	omero.web.wsgi_args Additional arguments. For more details
check Gunicorn Documentation [https://docs.gunicorn.org/en/stable/settings.html]. For example to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/omero/web/omero-web/var/log/error.log"

Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your OMERO.web installation. This can be achieved using the django-cors-headers [https://github.com/adamchainz/django-cors-headers] app with additional configuration of OMERO.web. See the django-cors-headers [https://github.com/adamchainz/django-cors-headers] page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
mv /etc/nginx/sites-available/default /etc/nginx/sites-available/default.disabled
if [-f /etc/nginx/sites-enabled/default]; then
 rm /etc/nginx/sites-enabled/default
fi
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS [https://nginx.org/en/docs/http/configuring_https_servers.html]. As an alternative to manually modifying the generated file you can generate a minimal configuration and include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and your additional configuration settings will still apply.

Note

If you need help configuring your firewall rules, see the
sysadmins/server-security.html [https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html] page.

Running OMERO.web

The following steps are run as root.

Install WhiteNoise [http://whitenoise.evans.io/]:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis [https://github.com/jazzband/django-redis]:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
chkconfig: - 98 02
description: init file for OMERO.web
###

RETVAL=0
prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
 echo -n $"Starting $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web start" &> /dev/null && echo -n ' OMERO.web'
 sleep 5
 RETVAL=$?
 ["$RETVAL" = 0]
 echo
}

stop() {
 echo -n $"Stopping $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web stop" &> /dev/null && echo -n ' OMERO.web'
 RETVAL=$?
 ["$RETVAL" = 0]
 echo
}

status() {
 echo -n $"Status $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web status"
 RETVAL=$?
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 RETVAL=1
esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

service nginx start
service omero-web restart

Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

	Session cookies omero.web.session_expire_at_browser_close:

	A boolean that determines whether to expire the session when the user
closes their browser.
See Django Browser-length sessions vs. persistent
sessions documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions]
for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

	The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

	Clear session:

Each session for a logged-in user in OMERO.web is kept in the session
store. Stale sessions can cause the store to grow with time. OMERO.web
uses by default the OS file system as the session store backend and
does not automatically purge stale sessions, see
Django file-based session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions] for more details. It is therefore the responsibility of the OMERO
administrator to purge the session cache using the provided management command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example
as a daily cron job, see
Django clearing the session store documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store] for more information.

Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you should configure connections and speed limits on your server to avoid blocking resources. We recommend you run benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to binary data.

Note

Handling streaming request/responses requires proxy buffering
to be turned off. For more details refer to
Gunicorn deployment [https://docs.gunicorn.org/en/stable/deploy.html]
and
NGINX configuration [https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering].

Note

omero.web.application_server.max_requests should be set to 0

See
Gunicorn design [https://docs.gunicorn.org/en/stable/design.html] for more details.

Experimental: Sync workers

The following steps are run as root.

Install futures [https://pypi.org/project/futures]:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads [https://docs.gunicorn.org/en/stable/settings.html#threads]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13 [http://www.gevent.org/]:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections [https://docs.gunicorn.org/en/stable/settings.html#worker-connections]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

OMERO.web installation on Debian 10 and IcePy 3.6

Please first read server installation on Debian 10 [https://docs.openmicroscopy.org/omero/latest/sysadmins/unix/server-debian10-ice36.html].

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user. Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use the omero-web system user and define the main OMERO.web configuration options as environment variables. Since 5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update

apt-get -y install unzip

apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install --upgrade https://github.com/ome/zeroc-ice-debian10/releases/download/0.1.0/zeroc_ice-3.6.5-cp37-cp37m-linux_x86_64.whl

Install OMERO.web:

/opt/omero/web/venv3/bin/pip install "omero-web>=5.6.1"

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure [https://www.openmicroscopy.org/omero/figure/] and OMERO.iviewer [https://www.openmicroscopy.org/omero/iviewer/]. See the main website for a list of released apps [https://www.openmicroscopy.org/omero/apps/]. These apps are optional and can be installed, as the root user, via pip to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes. You can check their status or stop them using omero web status or omero web stop.

	Session engine:

	OMERO.web offers alternative session backends to automatically delete stale data using the cache session store backend, see Django cached session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions] for more details.

	Redis [https://redis.io/] requires django-redis [https://github.com/jazzband/django-redis/] in order to be used with OMERO.web. We assume that Redis has already been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

	After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.cache

	Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver.
This can be changed by setting omero.web.prefix and
omero.web.static_url. For example, to make OMERO.web appear at
http://example.org/omero/:

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of
developers/index.html#web_index [https://docs.openmicroscopy.org/omero/latest/developers/index.html#web_index] developers documentation. For the full list, refer to
Configuration properties.

The most popular configuration options include:

	Debug mode, see omero.web.debug.

	Customizing OMERO clients e.g. to add your own logo to the login page
(omero.web.login_logo) or use an index page as an alternative
landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

	Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export PATH=/opt/omero/web/venv3/bin:$PATH:

	omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note

Do not scale the number of workers to the number of clients
you expect to have. OMERO.web should only need 4-12 worker
processes to handle many requests per second.

	omero.web.wsgi_args Additional arguments. For more details
check Gunicorn Documentation [https://docs.gunicorn.org/en/stable/settings.html]. For example to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/omero/web/omero-web/var/log/error.log"

Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your OMERO.web installation. This can be achieved using the django-cors-headers [https://github.com/adamchainz/django-cors-headers] app with additional configuration of OMERO.web. See the django-cors-headers [https://github.com/adamchainz/django-cors-headers] page for more details on the settings:

/opt/omero/web/venv3/bin/pip install 'django-cors-headers<3.3'

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS [https://nginx.org/en/docs/http/configuring_https_servers.html]. As an alternative to manually modifying the generated file you can generate a minimal configuration and include this in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and your additional configuration settings will still apply.

Note

If you need help configuring your firewall rules, see the
sysadmins/server-security.html [https://docs.openmicroscopy.org/omero/latest/sysadmins/server-security.html] page.

Running OMERO.web

The following steps are run as root.

Install WhiteNoise [http://whitenoise.evans.io/]:

/opt/omero/web/venv3/bin/pip install --upgrade whitenoise

Optional: Install Django Redis [https://github.com/jazzband/django-redis]:

/opt/omero/web/venv3/bin/pip install 'django-redis<4.9'

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
chkconfig: - 98 02
description: init file for OMERO.web
###

RETVAL=0
prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
 echo -n $"Starting $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web start" &> /dev/null && echo -n ' OMERO.web'
 sleep 5
 RETVAL=$?
 ["$RETVAL" = 0]
 echo
}

stop() {
 echo -n $"Stopping $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web stop" &> /dev/null && echo -n ' OMERO.web'
 RETVAL=$?
 ["$RETVAL" = 0]
 echo
}

status() {
 echo -n $"Status $prog:"
 su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web status"
 RETVAL=$?
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 RETVAL=1
esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

service nginx start
service omero-web restart

Maintaining OMERO.web

The following steps are run as the omero-web system user.

You can manage the sessions using the following configuration options and commands:

	Session cookies omero.web.session_expire_at_browser_close:

	A boolean that determines whether to expire the session when the user
closes their browser.
See Django Browser-length sessions vs. persistent
sessions documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions]
for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

	The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

	Clear session:

Each session for a logged-in user in OMERO.web is kept in the session
store. Stale sessions can cause the store to grow with time. OMERO.web
uses by default the OS file system as the session store backend and
does not automatically purge stale sessions, see
Django file-based session documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions] for more details. It is therefore the responsibility of the OMERO
administrator to purge the session cache using the provided management command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example
as a daily cron job, see
Django clearing the session store documentation [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store] for more information.

Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log and /opt/omero/web/omero-web/var/log/OMEROweb.log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you should configure connections and speed limits on your server to avoid blocking resources. We recommend you run benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to binary data.

Note

Handling streaming request/responses requires proxy buffering
to be turned off. For more details refer to
Gunicorn deployment [https://docs.gunicorn.org/en/stable/deploy.html]
and
NGINX configuration [https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering].

Note

omero.web.application_server.max_requests should be set to 0

See
Gunicorn design [https://docs.gunicorn.org/en/stable/design.html] for more details.

Experimental: Sync workers

The following steps are run as root.

Install futures [https://pypi.org/project/futures]:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads [https://docs.gunicorn.org/en/stable/settings.html#threads]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13 [http://www.gevent.org/]:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections [https://docs.gunicorn.org/en/stable/settings.html#worker-connections]. Additional settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

Publishing data using OMERO.web

The OMERO.web framework allows raw data to be published using built-in tools
or supplied through web services to external web pages. Selected datasets
can be made visible to a ‘public user’ using the standard OMERO permissions
system, ensuring you always have control over how users can interact with
your data.

There are several ways of publishing data using OMERO.web:

	using a URL to launch the web-based Image viewer, as described in
ViewPort [https://docs.openmicroscopy.org/omero/latest/developers/Web/ViewPort.html#launching-web-viewer], which can be accompanied by a thumbnail. For
more details of how to load the thumbnail, see
WebGateway [https://docs.openmicroscopy.org/omero/latest/developers/Web/WebGateway.html#urls-from-within-omero-web].

	embedding the image viewport directly into other web pages, for more
details see ViewPort [https://docs.openmicroscopy.org/omero/latest/developers/Web/ViewPort.html#embedding_web_viewport]

	allowing public access to the OMERO.web data manager

	writing your own app to host your public data (see
CreateApp [https://docs.openmicroscopy.org/omero/latest/developers/Web/CreateApp.html]) and then allowing public access to the
chosen URL for that app

The sections below describe how you might use these features and how to
set them up.

Configuring public user

The OMERO.web framework supports auto-login for a single username / password.
This means that any public visitors to certain OMERO.web pages will be
automatically logged in and will be able to access the data available to the
defined ‘public user’.

To set this up on your OMERO.web installation:

	Create a group with read-only permissions (the name can be anything e.g.
“public-data”). We recommend read-only permissions so that the public user
will not be able to modify, delete or annotate data belonging to other
members.

	Create a member of this group, noting the username and password (you will
enter these below). Again, the First name, Last name, Username and
Password can be anything you like.

Note

If you add this member to other groups, all data in these groups
will also become publicly accessible for as long as this user remains
in the group.

	Enable the omero.web.public.enabled property and set
omero.web.public.user and
omero.web.public.password:

$ omero config set omero.web.public.enabled True

$ omero config set omero.web.public.user '<username>'

$ omero config set omero.web.public.password '<password>'

	By default the public user is only allowed to perform GET requests. This
means that the public user will not be able to Create, Edit or Delete data,
as these require POST requests.
If you want to allow these actions from the public user, you can change the
omero.web.public.get_only property:

$ omero config set omero.web.public.get_only false

	Set the omero.web.public.url_filter. This filter is a
regular expression that will allow only matching URLs to be accessed
by the public user. If this is not set, no URLs will be publicly
available.

You need to configure the url_filter to allow all URLs that are
required for the pages you wish to be public but to block any
URLs that you do not want public users to access.

Some examples are listed below:

	To allow all URLs from a single app, such as ‘webgateway’, use a filter
for URLs that start with the app name. For example:

$ omero config set omero.web.public.url_filter '^/webgateway'

This filter permits all URLs needed for the full image viewer.
If you wish to block webgateway URLs for downloading data, use:

$ omero config set omero.web.public.url_filter '^/webgateway/(?!archived_files|download_as)'

	You may need to allow access to additional URLs for some apps.
For example, the OMERO.iviewer [https://www.openmicroscopy.org/omero/iviewer/] also
uses some webgateway and api URLs:

$ omero config set omero.web.public.url_filter '^/iviewer|webgateway|api'

	You can use the full webclient UI for public browsing of images.
Attempts by public user to create, edit or delete data will fail silently
with the default omero.web.public.get_only setting above. You
may also choose to disable various dialogs for these actions such as
launching scripts or OME-TIFF export, for example:

$ omero config set omero.web.public.url_filter '^/(webadmin/myphoto/|webclient/(?!(script_ui|ome_tiff|figure_script))|webgateway/(?!(archived_files|download_as))|iviewer|api)'

	Set the omero.web.public.server_id which the public user will be
automatically connected to. Default: 1 (the first server in the
omero.web.server_list):

$ omero config set omero.web.public.server_id 1

If you enable public access to the main webclient but still wish registered
users to be able to log in, the login page can always be accessed using a link
of the form https://your_host/webclient/login/.

Full example of hosting data for a publication

Putting the pieces of this puzzle together, the following describes the steps
of a complete workflow for using OMERO to host public data associated with a
publication. It is illustrated using an example publication from the Swedlow
lab in Dundee,
Schleicher et al, 2017 [http://dx.doi.org/10.1098/rsob.170099] with the
data hosted at
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017.

Ansible playbooks can be found describing how the production server in Dundee
(“nightshade”) was configured in the
prod-playbooks [https://github.com/ome/prod-playbooks]
repository on GitHub.

Group setup

A group-per-publication allows the public user to be selectively added (or
removed) from given publications to decide their visibility.

	Create a dedicated read-only group to host the raw data underlying the
publication (see cli/usergroup [https://docs.openmicroscopy.org/omero/latest/cli/usergroup]).

	Add all the authors of the paper to this new group.

	Once you have configured OMERO.web to create a public user (see below), add
the public user as a member of the newly created read-only group.

Configuring OMERO.web

If you wish to have an automatically logged-in public user while still giving
your existing OMERO users an unchanged user experience (i.e. not automatically
logging them in as the public user), a dedicated,
separate web server [https://docs.openmicroscopy.org/omero/latest/unix/install-web/web-deployment] for servicing
the public workflows can be added and configured to point at your existing
OMERO.server. This is the workflow adopted here by adding a public OMERO.web at
https://omero.lifesci.dundee.ac.uk, without changing the existing internal
OMERO.web.

	Follow the steps in Configuring public user above on the chosen OMERO.web.

	Also configure the filter on the public user
on the chosen OMERO.web by setting omero.web.public.url_filter
to allow ‘webclient’ so that the full webclient is visible for the public
user, and thus the Data tree with Projects and Datasets is also browsable,
as well as the Tags tab and the full image viewer.

Data migration

The data to be made public will need to be in the publication group to be
considered “published”.

	Move the original images into the dedicated group using OMERO.web or
OMERO.cli [https://docs.openmicroscopy.org/omero/latest/users/cli/chgrp]. The CLI is best used where Images or
Datasets are cross-linked to other Datasets or Projects in the original
group. The command omero chgrp Project:$ID --include Dataset,Image
cuts the cross-links in the original group and preserves the
Project/Dataset/Image hierarchy prepared for the move by the author.

	If you have used OMERO.figure to create your figures for publication, you
can always find the original data by using the ‘info’ tab, as shown in the
OMERO.figure Help guide [https://help.openmicroscopy.org/figure.html#info] (OMERO.figure supports a
complete figure creation workflow, including exporting figures into image
processing applications for final adjustments - see the
OMERO.figure Help guide [https://help.openmicroscopy.org/figure.html] for full details).

	Having all the data belong to one user simplifies the UI experience for
public users. If necessary, ownership of data can be transferred using the
‘Chown’ privilege (see sysadmins/restricted-admins [https://docs.openmicroscopy.org/omero/latest/sysadmins/restricted-admins] and
users/cli/chown [https://docs.openmicroscopy.org/omero/latest/users/cli/chown]).

Data layout

Once the data is in the dedicated read-only group, it can be reorganized
and renamed to reflect the publication e.g. Projects can be renamed
according to the corresponding figure panels in the manuscript while the
names of the Datasets could be retained corresponding to different
treatment conditions represented in each figure panel.
For example, Project
Schleicher_etal_figure7_c [https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27920]
contains images underlying the
publication Figure panel 7(c) [https://royalsocietypublishing.org/cms/attachment/36fd7495-4d87-454f-952e-a581da261f71/rsob170099f07.jpg].
Some Projects underlie two publication figure panels, such as Project
Schleicher_etal_figure2_a_c [https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27917]
where representative images are shown in panel (a) and the
corresponding quantification is shown in panel (c) of Figure 2 [https://royalsocietypublishing.org/cms/attachment/aac23d26-2197-4dc1-8f85-7bb5686f926d/rsob170099f02.jpg].
This makes clear which original images are underlying which figure panels
in the publication.

Data can also be tagged with OMERO tags to enhance the browsing
possibilities through these data for any user with basic knowledge of
OMERO. For example, see Tag:Schleicher_etal_figure1_a [https://omero.lifesci.dundee.ac.uk/webclient/?show=tag-364188]. The
tags are highlighting the images displayed in the publication figures as
images. The other, non-tagged images in the group are the ones used for
analysis which produced the published numerical data.

Key-Value pairs can be used to add more detailed information about the
study and publication. For example, go to Schleicher_etal_figure1_a [https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936]
and expand the ‘Key-Value Pairs’ section in the right-hand pane to display
the content (see the Managing data guide [https://help.openmicroscopy.org/managing-data.html#keyvalue] for information on using Key-Value pairs).

Configuring URLs

The URL of the first Project (corresponding to the first
figure in the publication) can be used for a DOI and data landing
page. For example, Project ‘Schleicher_etal_figure1_a’
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936
corresponds to http://dx.doi.org/10.17867/10000109.

Optionally, you can decide on a set pattern of URLs for this and future
publications. For example, in Dundee we have established a pattern which
supposes every new publication from our institution will be in a separate
group, and this group will be directly navigable by the public user using
the syntax: “server-address/pub/publication-identifier”. This means for
example, https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017
is the link where “omero.lifesci.dundee.ac.uk” is the server address, and
“schleicher-et-al-2017” is the publication-identifier.

This makes use of redirects allowing
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017 to
link to the correct group and Project in OMERO, just as the
DOI above does. Redirects need to be set in the
NGINX [https://nginx.org/] component of the OMERO.web installation
dedicated to publication workflows. You can find our configuration for this
example here on GitHub [https://github.com/ome/prod-playbooks/blob/2018-01/nightshade-webclients.yml#L181]:

location /pub/schleicher-et-al-2017 {
 return 307 /webclient/?show=project-27936;
}

OMERO.web UI customization

The OMERO.web offer a flexible user interface that can be customized.
The sections below describe how to set up these features.

Note that depending on the deployment choice, OMERO.web will not activate
configuration changes until Gunicorn is restarted using omero web
restart.

Index page

This allows you to add a homepage at <your-omero-server>/index/.
Visitors to your root url at <your-omero-server>/ will get redirected here
instead of redirecting to <your-omero-server>/webclient/.

Create new custom template in
/your/path/to/templates/mytemplate/index.html and add the following:

$ omero config append omero.web.template_dirs '"/your/path/to/templates/"'
$ omero config set omero.web.index_template 'mytemplate/index.html'

Login page logo

omero.web.login_logo allows you to customize the webclient login
page with your own logo. Logo images should ideally be 150 pixels high or
less and will appear above the OMERO logo. You will need to host the image
somewhere else and link to it with:

$ omero config set omero.web.login_logo 'http://www.url/to/image.png'

[image: _images/customLogin.png]

Login redirection

omero.web.login_redirect property redirects to the given location
after logging in to named pages. In the example below, a user who tries to
visit the "webindex" URL (/webclient/) will be redirected after login to a
URL defined by the viewname "load_template". The "args"
are additional arguments to pass to Django’s reverse() function and the
"query_string" will be added to the URL:

$ omero config set omero.web.login_redirect '{"redirect": ["webindex"], "viewname": "load_template", "args":["userdata"], "query_string": "experimenter=-1"}'

Top links menu

omero.web.ui.top_links adds links to the top header:

$ omero config append omero.web.ui.top_links '["Figure", "figure_index", {"title": "Open Figure in new tab", "target": "_blank"}]'
$ omero config append omero.web.ui.top_links '["GRE", "http://lifesci.dundee.ac.uk/gre"]'

[image: _images/topLink.png]

Open With option

omero.web.open_with adds items to the ‘Open with’ options.
This allows users to open selected images or other data with another
web app or URL. See LinkingFromWebclient [https://docs.openmicroscopy.org/omero/latest/developers/Web/LinkingFromWebclient.html].

Include template in every page

An HTML template specified by omero.web.base_include_template will
be included in every HTML page in OMERO.web.
The template is inserted just before the </body> tag and can be used for
adding a <script> such as Google analytics.

For example, create a file called
/your/path/to/templates/base_include.html with:

<script>
 console.log("Hello World");
</script>

Set the following:

$ omero config append omero.web.template_dirs '"/your/path/to/templates/"'
$ omero config set omero.web.base_include_template 'base_include.html'

Group and Users in dropdown menu

Customize the groups and users dropdown menu by changing the labels or hiding
the entire list:

$ omero config set omero.client.ui.menu.dropdown.leaders.label "Owners"
$ omero config set omero.client.ui.menu.dropdown.leaders.enabled true
$ omero config set omero.client.ui.menu.dropdown.colleagues.label "Members"
$ omero config set omero.client.ui.menu.dropdown.colleagues.enabled true
$ omero config set omero.client.ui.menu.dropdown.everyone.label "All Members"
$ omero config set omero.client.ui.menu.dropdown.everyone.enabled false

[image: _images/dropdownMenu.png]

Orphaned container

omero.client.ui.tree.orphans.name allows you to change the name
of the “Orphaned images” container located in the client data manager tree:

$ omero config set omero.client.ui.tree.orphans.name "Orphaned images"

[image: _images/orphans.png]

Disabling scripts

omero.client.scripts_to_ignore hides the scripts that
the clients should not display:

$ omero config append omero.client.scripts_to_ignore "/my_scripts/script.py"

[image: _images/disableScripts.png]

Download restrictions

omero.policy.binary_access determines whether users can access
binary files from disk. Binary access includes all attempts to download
a file from the UI:

$ omero config set -- omero.policy.binary_access +read,+write,+image

or on a specific group with ID 15:

$ omero group info 15
$ omero obj map-set ExperimenterGroup:15 config -- omero.policy.binary_access +read,+write,+image

[image: _images/downloadRestriction.png]

OMERO.web upgrade

The OME team is committed to providing frequent, project-wide upgrades with
security fixes, bug fixes and new functionality. We try to make the schedule for
these releases as public as possible. You may want to take a look at the Trello
boards [https://trello.com/b/4EXb35xQ/getting-started] for exactly what will
go into a release. See also server-upgrade [https://docs.openmicroscopy.org/omero/latest/sysadmins/server-upgrade.html].

See the full details of OMERO.web features in the CHANGELOG [https://github.com/ome/omero-web/blob/master/CHANGELOG.md].

This guide aims to be as definitive as possible so please do not be put off by
the level of detail; upgrading should be a straightforward process.

Upgrade checklist

	Check prerequisites

	Upgrade

	Configuration

	Plugin updates

	Restart OMERO.web

	Troubleshooting

	Maintenance & Scaling

Check prerequisites

Before starting the upgrade, please ensure that you have reviewed and
satisfied all the system requirements [https://docs.openmicroscopy.org/omero/latest/sysadmins/system-requirements.html] with
correct versions [https://docs.openmicroscopy.org/omero/latest/sysadmins/version-requirements.html] for installation.

Upgrade

Make sure you have activated the correct virtual environment then
upgrade OMERO.web via pip:

$ pip install --upgrade omero-web

If the omero-web upgrade requires an upgrade to omero-py (e.g.
for new features), this will happen automatically above.
However, even when an omero-py upgrade is not required, there may be some
benefits to upgrading:

$ pip install --upgrade omero-py

Configuration

We now recommend that omero-web is installed in a separate python
virtual environment.

If you are migrating to a new virtual environment, where $OMERODIR
does not refer to a server with an existing config, you will
need to export and re-import the configuration from your previous installation.

OLD_INSTALLATION/bin/omero config get --show-password > properties.backup

omero-web virtual env
omero config load properties.backup

If you generated configuration stanzas using omero web config which
enables OMERO.web via NGINX, you should regenerate your config files,
remembering to merge in any of your own modifications if necessary. You should
carry out this step even for minor version upgrades as there may be fixes which
require it.

omero web config nginx > new.confg

More examples can be found under Configuration.

Plugin updates

OMERO.web plugins are very closely integrated into the webclient. For this
reason, it is possible that an update of OMERO will cause issues with an older
version of a plugin. It is best when updating the server to also install any
available plugin updates according to their own documentation.

All official OMERO.web plugins can be installed from PyPI [https://pypi.org].
You should remove all previously installed plugins and install the latest
versions using pip.

Restart OMERO.web

Finally, restart OMERO.web with the following command:

$ omero web restart

Troubleshooting

If you encounter errors during an OMERO.web upgrade, etc., you
should retain as much log information as possible, including
the output of omero web diagnostics to the OMERO
team via the mailing lists available on the support [https://www.openmicroscopy.org/support]
page.

Maintenance & Scaling

If you have not already done so, there are a number of additional
steps that can be performed on your OMERO.web installation to improve
its functioning. For example, you may need to set up a regular task
to clear out any stale OMERO.web session files. More information can
be found in the various walkthroughs available from OMERO.web installation and maintenance.

Additionally, it is recommended to use a WSGI-capable server such as NGINX.
Information can be found under OMERO.web installation and maintenance.

Index

 Symbols
 | E
 | O

Symbols

 	
 	$OMERODIR

E

 	
 	
 environment variable

 	$OMERODIR

 	OMERO_HOME, [1], [2], [3], [4], [5]

 	OMERODIR, [1], [2], [3], [4], [5]

O

 	
 	OMERO_HOME, [1], [2], [3], [4], [5]

 	
 	OMERODIR, [1], [2], [3], [4], [5]

 _static/file.png

_images/topLink.png
'OMERO Data Hstry Admn Figue GRE

Swedlow Lab Aleksandra Tarkowska

Explors | Tags | Public

=N |

Q

_static/minus.png

_static/plus.png

_images/downloadRestriction.png
1)[2.7] [¢][ca) (1] (z.z)[#][cg]
Download... Save As JPEG
Export as OME-TIFF... Save As PNG
Save As JPEG Save As TIFF
Save As PNG e

Save As TIFF

_images/dropdownMenu.png
Virtual Microscope Anatomy

20 Al courses
Course:
. Anatomy Dermatology

83 5152004 Neuroni
88 8521007 Introcuctor) Dentistry

80 8531002 HS1900Y § isomatology

Medicine

_images/customLogin.png
<:OME

_images/disableScripts.png
Sea

| analysis_scripts »
export_scripts »
figure_scripts »

ulil_scripts »

_images/orphans.png
Explors | Tags | Public

Q

88 Bigimages 14
83 Drop Box

nav.xhtml

 Table of Contents

 		
 OMERO.web installation and maintenance

